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A RAPID NUMERICAL SOLUTION TO SUBSONIC FLOW OVER PLANAR

AND AXISYMMETRIC PROFILES AT AN ANGLE OF ATTACK OF 00

By Vincent R. Mascitti

Langley Research Center

SUMMARY

A rapid numerical solution is presented in this paper for the incompressible flow

over thin planar and axisymmetric profiles at an angle of attack of 00. The method uses

a finite-difference field solution to the governing equation with a Gauss-Seidel successive

overrelaxation scheme. However, the use of a simple Cartesian grid system restricts

this method to slender profiles. Results are presented for a cambered airfoil, airfoil in

wall effect (two-dimensional flowthrough inlet), body of revolution, and flowthrough

nacelle.

A computer program is presented which can be used for any of the previously men-

tioned cases with simple input changes. Results for compressible flow are available with

the use of the appropriate two-dimensional or axisymmetric compressibility corrections.

Computational time for a typical field calculation of 3000 grid points and 200 cycles

through the field is less than 1 minute with less than 50 000 octal storage on the Control

Data Corporation 6600 computing system at the Langley Research Center.

INTRODUCTION

In the past decade the advent of the high-speed digital computer and the development

of numerical techniques such as finite differences has enabled the aeronautical researcher

to attack many problems which were previously not tractable. Especially in low-speed

aerodynamics, a diversity of problems which consider nonlinear effects with inviscid

formulations have been approached.

Solutions to the subsonic and transonic flow over airfoils are presented in refer-

ences 1 and 2. The method of reference 1 is formulated in terms of the velocity potential

and rapid computational times are realized even for the transonic flow case. However,
extensions of the method to rotational or viscous flow is prohibited. The method of ref-

erence 2 was formulated in terms of the stream function, but it was made clear that the

stream function formulation is probably not feasible for transonic flow because of the

difficulty in evaluating the density function, which becomes double valued in the region of



transonic flow. The transonic flow about slender bodies of revolution was solved in ref-
erence 3 with very good accuracy. Once again the velocity potential formulation was
utilized. The solution to the transonic nacelle problem was performed in reference 4 by
using the streamtube curvature approach.

With these methods available for subsonic and transonic flows, it is appropriate to
consider a general solution procedure for subsonic flows which encompasses these pro-
files and is extendable to rotational and viscous flows.

The purpose of this paper is to present a simple and rapid approach to the general-
ized two-dimensional (planar or axisymmetric) flow problem requiring the solution of
elliptic differential equations. The computer program can be used to reproduce classical
incompressible flow solutions, such as the airfoil and body of revolution. But more
important, the technique can be used as a springboard for more complex problems in
two-dimensional subsonic flow. The program is simple enough to insure that the built-in
algorithm for the present governing equation can be replaced with others corresponding to
different equations. For example, the rotational flow problem with nonuniform upstream
velocity can be solved as in reference 5. A simplified Cartesian grid system which
restricts the calculations to slender sections at an angle of attack of 00 is used. Grid
refinement in the axial direction is employed to provide a better definition of rapidly
changing flow properties. A detailed listing of the computer program with operating
instructions is presented.

Illustrations of program applications are presented for cambered airfoil and airfoil
with thickness in wall or ground effect, a parabolic body of revolution, and a camber-line
nacelle. Results are compared with classical conformal mapping or finite-element sin-
gularity solutions. A comparison with experimental data for a NACA series nacelle hav-
ing thickness and camber, at a Mach number of 0.6 and a mass-flow ratio of 0.787 is also
presented to demonstrate the versatility of the method.

SYMBOLS

Cp pressure coefficient

c chord

i,j index for axial and lateral field points (see fig. 1)

K two-dimensional flow index. If = 0, planar; if = 1, axisymmetric

L matrix size
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m/mo mass-flow ratio (the mass flow captured by the profile compared with the

flow captured in free stream)

R iteration number

Uo  free-stream velocity

u,v velocity components in the z- and r-directions, respectively, nondimension-

alized to free-stream velocity

z,r coordinates (see fig. 1)

6 angle corresponding to average trailing-edge slope (positive clockwise, see

fig. 1)

v overrelaxation factor

"k stream function

'Po  upstream value of stream function at profile radius

METHOD OF SOLUTION

The governing equation for steady, irrotational, incompressible flow in two dimen-

sions is given in reference 6 as

a 2 -K -- + a ~  0 (1)
8r 2  r 8r 8z 2

If K = 0, the flow is planar. If K = 1, the flow is axisymmetric. The velocity compo-

nents are given by:

u=
rK 8r

(2)

v ----

rK 8Z
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In the present finite-difference field solution, it was assumed that an infinite field can be
represented by a finite field provided that it is sufficiently large compared with the body.
Furthermore, along the boundaries of the finite field, the boundary condition at infinity

was applied; that is, v = 0 and u = 1. Therefore

4boundary oc rK+1

The boundary condition on the surface of the profile is satisfied by

surface = Constant

The present method accounts for unequal spacing around a grid point, but for clarity
the following equations and algorithms are presented for equal spacing. The finite-
difference algorithms for unequal spacing can be readily derived and are presented in
appendix A.

The second-order finite-difference algorithm for equations (1) and (2) with equal
grid spacing is

ij+ - 2 i,j + ij - i,j+1 -1 ) + Pi+1,j - 2 i,j + ip-i,j) = 0 (3)

and

2rj Ar-

(4)

v2r (i+l,j- Pi-1,j

For a given number of grid points L, equation (3) yields L simultaneous linear
equations which can be solved by the inversion of an L x L matrix. However, the result-
ing influence matrix is strongly diagonal and suggests a solution by iteration.

A possible method is the Gauss-Seidel iteration scheme given by

R+1 1 1(R + R+1 K R R+1 1 R+1
, 2 2 2 i,j+l + ,-1 2r r ij+ i,j-1 + ,j i-1,

- + (Ar r jAz2
Ar 2  AZ 2

GR R+1 R R+1 (5)
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With this method the calculation marches (fig. 1) from lower left to upper right and

continually updates values of the stream function as they become available. The method

is convenient to program and requires storage only for L number of points. However,

this method was found to converge slowly and required many marches through the field

to obtain an accurate solution.

The method selected for this paper employs the Gauss-Seidel overrelaxation

scheme given by

i+1 = iu +v Rij+1' iRj-l' i+l,j 1 j- (1 v < 2) (6)

Utilizing overrelaxation was found to reduce the numberof marches through the

field by an order of magnitude over the Gauss-Seidel iteration scheme (v = 1), as indi-

cated in reference 7 when applied to the Laplace equation.

In the case of a profile where the surface stream function is known a priori (sym-

metric airfoil and closed body of revolution), the previous equations are sufficient to

determine the solution anywhere in the field. For the cases where the stream function

ahead of and on the surface is unknown (cambered airfoil, airfoil in ground effect, or

nacelle), an additional equation is required. The equation is obtained from the Kutta con-

dition and it is assumed that the flow leaves the trailing edge alined at the average

trailing-edge slope. For the trailing edge,

- = tan 6
u

By using equations (2)

ap/az _ tan 6

by using the appropriate algorithms

-3 ij+ 4 i+1,j - i+2,j) _jtan 6

or by rearranging

1 ___ztan (,i,j+1 - ijl)] (7)
kij =  i+l,j -ki+2,j tArn i
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Equation (7) applies only to the trailing edge. Since the profile is a streamline

itself, all profile points can be set equal to trailing edge and can be continually

updated after each sweep through the field.

The grid system incorporated in the present solution can have only one horizontal
grid line intersecting the profile. (See fig. 1.) As a result of the simplified grid system
employed, this present method is applicable only to slender profiles at an angle of attack
of 00. Naturally, one would not expect accurate results in the region of a blunt leading
edge.

The pressure distribution on various profiles is presented in the next section and
is compared with classical solutions. The pressure coefficient can be calculated by the
following relations:

Cp= 1 - u2 + v2)

where

u- 1 y
rK ar

v=u drsurface

A listing of the computer program used to calculate the field stream function and
surface pressures on slender profiles is presented in appendix B. Computational time
for obtaining results with this program has been estimated at 1 minute per case for
3000 field points and 200 field sweeps on the Control Data series 6600 computer system
at the Langley Research Center.

RESULTS AND DISCUSSION

The present method has been used to compute the flow field and pressure distribu-
tion on various profiles. The input field size was enlarged until surface pressures did
not vary. Comparisons of results are made with classical or currently used techniques.
All cases computed by the present method have required less than 1 minute computational
time on the CDC 6600 computer. Computer storage is less than 50 000 octal for all
cases. The detailed inputs are presented in appendix B for all cases which were run.
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Airfoil With Thickness and Camber

Figure 2 shows the computational grid for the NACA M6 airfoil which has

12-percent-chord thickness and 5.4-percent-chord camber. There are 2091 grid points

in the field, the field extends 1 chord length upstream and downstream, and 2 chord

lengths laterally.

Figure 3 shows the pressure distribution on the upper and lower surfaces. The

solid line represents the solution obtained by using exact potential theory. (See ref. 8.)

The symbols show the results obtained by using the present method. In general, agree-

ment is better on the upper surface where there are more grid points near the surface.

(See fig. 2.) Agreement is poor near the blunt leading edge where the simplified grid

system provides a coarse grid.

Symmetric Airfoil in Wall Effect

Figure 4 shows the computational grid for a symmetric airfoil whose geometry is

given by the following relationships:

r = 0.025 1 - (1 - 2z)3 (0 < z - 0.5)

r = 0.02511 - (2z - 1)3] (0.5 5z 5 1)

The airfoil has a thickness of 5-percent chord. The wall is placed at 30-percent chord

in the lateral direction. There are 2193 grid points in the field.

Figure 5 shows the pressure distribution on the upper and lower surfaces. The

solid lines represent the solution using a distribution of surface singularities (ref. 9).

The symbols represent the results obtained by using the present method. The agreement

is very good for this thinner airfoil except at the blunt leading edge where the grid spac-

ing is too coarse to provide accurate results.

Parabolic Body of Revolution

Figure 6 shows the computational grid for a parabolic body of revolution with

10-percent-chord thickness. The lateral field extends 1.2 chord lengths with 1071 grid

points.

Figure 7 shows the pressure distribution on the body surface. The solid line repre-

sents the solution obtained by using a distribution of surface singularities. (See ref. 9.)

The symbols represent results obtained by using the present method. Once again, the

agreement is very good in regions where there are grid points close to the surface.
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Camber- Line Nacelle

Figure 8 shows the computational grid for a camber-line nacelle which has

2.135-percent-chord camber and a 13.671-percent-chord capture radius. The lateral
field extends 9 capture radii laterally.

Figure 9 shows the pressure distribution on the nacelle surface. The circular
symbols are the results obtained by using the streamtube curvature method (ref. 4).

The present method, given by the square symbols, shows very good agreement.

NACA 1-89-100 Nacelle

Figure 10 shows the computational grid and geometry of the NACA 1-89-100 nacelle.

(See ref. 10.) Experimental data for this nacelle was obtained at a Mach number of 0.6.

A translating center body was used in the tests to obtain results for different mass-flow

ratios.

The three-dimensional "Gothert" compressibility correction is incorporated in the

present method. Because of the simplified grid system the center-body geometry could

not be represented. However, results can still be obtained for different mass-flow ratios

by deleting the Kutta condition. The Kutta condition or flow direction condition at the

trailing edge sets the value of the surface stream function. If the mass flow is known,
then the surface stream function is known by

4 'surface m

Po mo

(See fig. 1.) Since the correct internal geometry is not used, the internal pressure dis-

tribution will be invalid. However, the pressure distribution on the outer surface should

be correct as long as the proper mass-flow ratio is used.

Figure 11 shows the pressure distribution on the nacelle outer surface at a Mach

number of 0.6 and a mass-flow ratio of 0.787. The circular symbols are the experimen-

tal data. The square symbols are the values obtained by the present method. The agree-
ment is very good except in the region of the trailing edge, where the proper flow direction
because of the presence of the center body is not represented. The example illustrates
the versatility of the present method to solve problems which are difficult to handle with
classical methods.
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CONCLUDING REMARKS

A rapid numerical solution has been presented for the incompressible flow over

thin planar and axisymmetric profiles at an angle of attack of 00. The method uses a

finite-difference field solution to the incompressible equation with a Gauss-Seidel succes-

sive overrelaxation scheme. In spite of a simplified grid system and a small number of

surface points, results were in very good agreement with classical solutions for a variety

of cases. The field-point formulation using the stream function is convenient for extend-

ing the present capability to subsonic nonpotential inviscid and viscid flows.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., October 24, 1973.

9



APPENDIX A

FINITE-DIFFERENCE ALGORITHMS FOR DERIVATIVES

WITH UNEQUAL SPACING

For second-order central difference approximations to derivatives of a function
across an interval:

z
0 0 Z

i-i ah i h i+l

Sketch (a)

the function is of the form

= a O + a l z + a 2 z 2

Sal + 2a 2 zdz

d 2
- 2a

-=2a 2dz

because

i-1 = a0  (z = 0)

i =  i- + alah + a2 a 2 h2  (z = ah)

i+1 i-1 + (1 + a)hal + (1 + a) 2 h2 a 2  (z = (1 + a)h)

where ah and h are relative point spacings. (See sketch (a).) As a result,

a2  
2  + - (1 + a)i +i-

ah (1 + a)
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APPENDIX A - Concluded

al ah( 1+ a) a2ji+1 + (1 + a)2- (1 + 2a) i 11

Therefore

di _ 2 a2~i 1 + (1 + a)(1 a)- i /i-1
dx a ih(l + a) (1

d2  
- 2 -(+ i_

dx2 i ah 2 (1 + ca)
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APPENDIX B

COMPUTER PROGRAM FOR CALCULATING THE PRESSURE

DISTRIBUTION AROUND SLENDER PROFILES

The calculation procedure described in the main body of the paper for obtaining

pressure distribution around slender profiles has been programed for high-speed digital

computation. The purpose of this appendix is to provide a description of the necessary

input and available output as Well as a FORTRAN IV (ref. 11) listing of the source pro-

gram. Input listings for the profiles studied in the main body of the paper are presented.

The output listing for the cambered airfoil is presented as an example.

Description of Program

The program reads the profile coordinates and field geometry. The grid is gen-
erated and initially labeled as uniform flow. The program marches through the field

updating the value of stream function at each point according to the differential equation.
At the trailing edge the Kutta condition is used instead of the differential equation. When
the field sweep is completed, all profile points are given the same value of stream func-
tion as the trailing edge, and a new sweep is started. The program proceeds for
200 sweeps through the field, at which time the surface pressure coefficients are com-
puted with the latest values of stream function. The results are then printed. Computa-
tional time for the case of 3000 field points and 200 sweeps through the field is 1 min-
ute. The required storage is 50 000 octal on the CDC 6600 computing system at the
Langley Research Center.

Program Listing

The FORTRAN IV listing of the source program used on the Control Data series
6600 computer system at the Langley Research Center is as follows:

DIMENSION XOL(31) YOLT(31),YOL8(31),Z(101) ,R(ll PSI(101,R1),
1SLOPET(31 )SLOPER(31 ) DELZ ( 101)JTAB(41)
REAL MACH,MASS
NAMELIST/NUM/XOLYOLTYOLRRBOLNX SCALEZ.SCALEJTE•DELZS,NC.AN

I MACHMASS
500 READ(5,NUM)

IF(FOF.9) 200,99
99 WRITE(6,NUM)

PI=3..141592653589793
RBOL=RROL*SORT (1.-MACH**2)
DO 1 I=1,NX
YOLT(I)=YOLT(I) SQPT (.-MACHo*2)

1 YOLR(I)=YOLR( I)*SRT(1.-MACH**?)
SCALEZ=SCALEZ+.1E-OR
SCALER=SCALER+. IE-0

C GENERATION OF COMPUTATIONAL SRID
AL=1.
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APPENDIX B -Continued

RB=RBOL*AL
IF (JTE.EO.1)DFLR=.060
IF(JTE.EQ.1)GO To 17
OELR=RROL/ (JTF-1)

17 CONTINUE

ILF=(II-NX)/2+l
ITE=ILF.NX-1
JJ=IFIXr (I.+SCALER)*RR/DFLP) +1
IF(JTE.EO.1)JJ=IF1XCSCALFP/nFLR)+I

DO ? J=?,JJ
2 R(J)=R(,J-fl.DELR

IMTD= (NX- ) /2+1
DO 30 1RP.IMTD
IITLE-IP~l
DEL? (I)=XOL ( R) -X0L (IR-I1

30 CONTINUE
INF=ILF- (NX- ) /2-I
DO 31 TI*1IMF
DEL? (I) =DFLZS

31 CONTINUF
IMP=TTF, (NX-1 ) ?
ILIM=IMR-1
DO 3? T=ITE.TLIM
I9=ITF-ILE- C -ITF)
DEL? (I)=XOL CI1) -XOL( IR)

3? CONTINtJF
DO 33 I=IMR~IT
DEL? (I)=DFLZS

33 CONTINUEF
K=ITF-I
DO 3S I=ILE.K

35 DEL? CT) =XOL CI-1LF.2) -XOL CI-ILP.1)
Z (1) =0.
00 34 1=2,11

34 ZCfl=Z(T-Il.DFLZ(I-1)
C NI.ImHE4Nr( OF RCAMNARY STRFAM FUNCTION

DO I 1=1.11
P5J (Iq?)=q00.

3 PST(CI)=t0.
DO 4 J=PqJJ

PSTIC,j)=PSI(1.2)*(P(,J)/OELR)**NC.
DO 4 I=?,I1

4 PSI (IJ)=PSI (1-1,1)

C FIELD MARCHING LOOPS
K=T I-1
L=jj-l
IC UN T =0

10 ICOUNT=TCOLJNT,1
00 5 J?91
DO 6 =,
A=).
IF((j.FO.JTE ).A'nO.(I.CF.ILE ).ANO.(T.LT.TTF ))GO Tn 6
IFU(J.FO.JTF).APJn.(T.EO.TTF))'O TO 11
GO TO 1?

11 IF(MASS.GT.10.)(iO TO 19
PSI(I.J)=PSI(1,JTF)*MASS
GO TO 6

C KUTTA CONDITION CALCULATION
15 C= (YOLT (NX -1)-YULH (NX-I /(P. *(XOl- NIX) -XOL (NX - I l

8=DFLZ(CT~l )/DFLZ CI)
PST (I J)=( (I .,P)*Il .,P)*DST (I1] 9 -PSI (T.?g,J) C-r*flFL7( 1)*C .- ki

I F( (J. FO.,JTE) .AiO. (TI. O. ITF) )GO To 6
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APPENDIX B - Continued

I? IF((J.Fo.(,JTF+I)).ANn.(T.rF.ILF).A in.IT.LF.TTF)ir,() TOP
IF((J.FO.(JTE-1)).ANr).(T.rF.TLE).ANn.(T.LF.TTF))

IA=I.-YOI-R(I-TLF+l /F)FI-P
H=nPL7(j)/OEL7(I-1)
PSI(I-J)=PST(TgJ)+AN*(

6 (PST ( I .,J-1 ) * (P./ ( ( I . +A) *nFLP.*nFLR) +A* (NC-1 4) *r)FLP*P (J) +
IPST(T.J+I)*(2./(A*(I.+A)*nFLP*nELP)-( IC-I)/(A*('.+Al*nFLP*P(j)))+
2(R*PST(T-lgj)+PST(T.l.j)i*(?./(R*(i.+R)*nFLZ(T-i)*nPLZ(T-1))))
7(2./(R*r)ELZ(1-1)*DFL7(T-1)1+2./(A*nFLP
3*DELR)-(I.-A)*(NC-I)/(A*nELR*P(Jii)
4-PSI(I.J))

GO TO (
9 A=I.-YOLT(I-ILE+l )/nFLP

R=r)FLZ(T)/0FLZ(I-J)
PSI(TJ)=PSI(I*J)+AN*(

6(PST(IJ-I)*(?./(A*f)ELR*nFLR*(I.+4))+( IC-I)/(P( i)*A*nF7LP
1*(I.+A)))+PSI(19,)+I)*(?./(nFLP*nF[-R*(].+A))-A*( IC-I)/(P(,I)*f)Fl-P

3/(P(J)*A*nELR)
4-PST(I.J))

6 CONTINUF
5 CONTINUE

DO q I=TLF91TE
9 PSI(I-JTF)=PST(ITF.,)Tr)
IF(TCOUNT.EO.P00GO Tn pq
GO TO 10

20 CONTINUE
IT=NX-1
DO 14 1=?.IT

SLOPFT(T)=(YOLT(T+I)-YOLT(T-11)/tXOL(T+I)-XOL(T-1))

14 SLOPFR(T)=-I.*(YOLR(1+1)-YOLR(T-1))/(XOL(T+I)-xnL(T-11)
SLOPFT(I)=YOLT(2)/XOL(?)
SLOPE8(I)=-I.*Y0LR(P)/XOL(2)
SLOPET(NX)=-I.*YOLT(NX-11/(XOL(NXI-XOL(NX-1)I

SLOPER(NX)=YOLR(NX-I)/(XnL(NX)-XOL(NX-111
t)O=PSI(191)/(?.*P(2)**(NC-I)*nFLP)

IL=TLF
IT=ITF
IF(JTF.FQ.I)TL=ILV+I
IF(JTF.FQ.I)IT=ITE-l

C CALCULATION OF VELOCITY COMPONFNTS ANn PRESSUPE COEcFICTENT
DO 13 I=IL91T
A=I.-YOLT(I-ILE+l )/r)FFLP
UZT=I./((P(JTF)+YOLT(T-ILF+I))**(NC-1) *A*nELR*(J.+A))
1*(-I.*A**P*PST(19JTF+P)+(I.+A)**P*PSI(TJTE+I)-(I.+?.*A)*
2PST(IJTE))/UO
URT=(JZT*SLOPET(I-ILE+l

UZT=((JZT-1.)/(I.-MACH**2)+l.
URT=URT/SORT(I.-MACH**2)

CPT=I.-(L)7T**p+URT**2)
IF(MACH.GT.O.)CPT=((I.+MACH**2*CPT/5.)**3.5-1.)/(.7*MACH**2)

IF(JTF.EQ.I)GO To 18
A=I.-YOLB(I-ILE+l )/nFLR
UZR=1./((R(JTF)-YOLR(T-ILE+I))**(NC-1) *A*nFLR*(I.+A))*
1((I.+2.*A)*PST(19JTE)-(I.+A)**P*PSI(IJTE-I)+A**2*PSI(19,)TE-2))/UO
URB=tJZ8*SLOPER(I-ILE+l
UZ8=(UZR-1.)/(I.-MACH**?)+I.
URS=UR8/SoRT(I.-MACH**2)
CP8=1.-(UZB**?+UPR**2)
IF(MACH.GT..l)CPR=((I.+MACH**?*CPP/S.)**3*9-1.)/(.7*MACH**2)

IS K=I-TLF+l
WRTTE(6q400)XOL(K)qCPTqCPR

400 FORMAT(2X4HXOL=EI2*492X4HCPT=EI2.492X4HCPR=EI2'4)

13 CONTINUE
GO TO 500

200 STOP
END

14



APPENDIX B - Continued

Input

A single case consists of the pressure distribution around a given profile. It is
necessary to input the profile and field geometry, planar or axisymmetric code number,
value of overrelaxation factor, Mach number, and mass-flow ratio. For the loading rou-
tine used in the program, any column except the first may be used on the input cards. A
decimal format is used for the input quantities. A description of the required inputs and
FORTRAN variables used by the source program are as follows:

FORTRAN
variable Description

$NUM arbitrary name required by the loading routine to define the input data block

XOL array name for axial profile coordinates

YOLT array name for upper surface coordinates

YOLB array name for lower surface coordinates

RBOL capture radius in percent of chord

NX number of surface points input

SCALEZ axial extent of field in percent of chord

SCALER lateral extent of field in percent of capture radius

JTE jth value of approach grid line

DELZS standard axial increment for far field. Multiple of largest surface axial
increment. Must be compatible with SCALEZ

NC code number for planar or axisymmetric

NC = 1 planar

NC = 2 axisymmetric

AN overrelaxation factor

1 _ AN < 2

MACH free-stream Mach number (use for axisymmetric only)
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APPENDIX B - Continued
FORTRAN
variable Description

MASS mass-flow ratio

$ denotes end of case (column 2)

The system loading subroutine in the program (namelist) is very flexible in that the
order of the input cards is unimportant and successive cases can be run by repeating the
identification and $NUM cards followed by only the changed parameters and a $card.
Experience has shown that 1.85 to 1.95 is a suitable value for the overrelaxation fac-
tor AN. The input listing for each of the profiles is given.

Input for NACA M-6 Airfoil

XOL = 0.0, 0.195E-01, 0.?5-01, 0.5F-01 0.75E-01. 0.IF+10
0.15F+00, 0?2F+00, 0.3F+00. 0.4F+n.0 0.5E+ ,6. 0.F+0O.
0.7E+004 0.8E+00. 0.P5F+00, 0.cF+60, 0,9?2F+00. O.Q F+06.
0.979E+00, 0.QP7F.F+00 0.IF+01i T,. T To Ti T T 1. T.

YnLT = 0.0. 0.107F-01. 0.2RIF-I01 0 .403E-01• 0.494F- . 0.C71F-01.
0 6B 2-0619 P 1 .0. .8?F-01 4 0.900F-019 0 .7?6F-01*
0.603F'01, 0.46AE-01, 0.306F-01, 0.?3F-016 0.15F- 01.
O.1?2E-1O, 0.AF-02 0.44F-02. 0.22F--27 0.0 To To To Il T, II,

Ti T, 14 1.
YOLR = 0.0, 0.176E-01- 0.22E-14i ) .?7F-01* O 33-01. 0.34F- 1,

0.347F-01. 0.16?E-01, O.37qE-01 0.3TF-01 0.394;-01.
0.382E-01, 0.33F -01 0 @-l 330.177F-0 1
0.143E-01. 0.10RE-01 0.59F-02, 0.9?E-02, 0.0, T. I 1, . . Ti . .

I, I. 14 T.
PROL = 0.E+014
NX = 1 .
SCALEZ = O.1EOl14

JTE = 21.
DELZS = 0.1E 00
NC = 19
AN = 0.1q9E+01.
MACH = 0.0,
MASS = -.2Fo? -- _
$END

Input for Airfoil in Wall Effect

$NUM
XOL = 0.09 0.1 5F-ul. O.?5F-14 0.7F-01 ,.7E-o01, .1F+00*

0.15F+00. 0.?F+nO, 0.3C+00 , 0.4F.+no, 0.5_+00._ 9.6E+00,
0.7E+00, 0O.E+00 0.85E+00; 0.qE+0,* 0925+00, n0.S5F00.
0.97E+00, 0o97A75F+009, 0.E+01, I0 1_ 0_T _,_ iTo. TT T_ To T. .. .

YOLT = 0.0. O.10455052)S034F-ni. 0.13061R6611241 E-OI,
0.161781R4067401F'1 0. 1 ,200733451794F-0T* . 0.1Q6RP48q91 55 . -Ol.0.2173343Q63359RF-01* 0.230?18146Oq2F-O- - 0.?4454a 6?3244E-0 1
0.249 3 3 1c476119F-0I, _Q.?5F-01. 0.?4RF-0-I. _O,3_0.4E-01. ,Js6_F-0 .
0.16425E-Ol 0.12?F-01, 0,9646R744q9QQQQQE-02
o.6 7 75 0 000000002F-o02. 0.3C;56 499993 -02 1 15629RF-

.. .. !... 1 .- t * *_1*_*I _t . I . . T • 
_* 

L_ *_ T___ 
_YOLR = 0.0, 0.1045505?15034E-014 0.1306161241- -5_E-01-,

O.1617RAl4067401F-01o 0.1AR00733451704E-01. 0.1Q2?4859i5511y-01!
0.?173343Q6335Q8F"01" 0.230521P1460?92F-01, 0.244-4866?23244F-01.
0.*24 9 3 3 15a761193F-01 0.25F-01, 0.24 E-01 0.234F-01, 0.196F-0,
0.16425F-01. 0.122£F-,1 0.9646874999QQ99E-02.
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APPENDIX B - Continued

0.67750 000U000002E-0. 0.3565624QQ00 QQF-02, 0.1R8156-4299! R-n0.
0.0. 14 I T T, 1 1* To I- To To T..

RBOL = 0.3E+004
NX = 21,
SCALEZ = 0.1000000001E+01. .. .

SCALER = 0.6000000001E+01. ...
JTE = 7,
DELZS = 0.IE00.
NC = 1t
AN = 0.19E+01. -- - ......
MACH = 0.0'
MASS = 0.?E+02.

--- -------.............. ............................................... .

0.o00 0 o.006.oo 0000
.010 .01 n .013....
.013 .013 .02.......
.016 .01A .050

.01A .01A .075
..... .0 0 .0?0 .100 -

.022 .0; .150 .

.023 .0P .200

.024 *OP? .300

.05 .0?q .400 - -

.025 .025 .500

.025 .2?5.. .600

.023 .01 .700

.020 .020 .-00

.016 .016 .850

.012 .01? .900

.010 .010 .925
.,..07 ... 9 . . .. . . . ..

.004 .004 .975

.002 .00? 9 .9
0o;00 0.000 1.000

Input for Parabolic Body of Revolution

$NUM
SXOL = 0.04 0.19E-01. 0.?5E-01, 0.5E-01. 0.75E-0C1 0.IF+00.

0.15E+00. 0.2E+00, 0.3F+00, 0.4F+n00- 0,E+00. 0.6E.+00.... .

0.7E+004 0.8E+00 0.R.F+00 0. F+00 0.9205F+00, (.95E+00.

0.975F+00. U.9R75SE+00 0.1F+01* T T TI I T I' I' I, 1, I

YOLT = 0.04 0.?46875E-02, 0.4R75F-0?2 0.95E-02 0.13975'-01. 0.1RF-01.

0.-255E'0l 0.32F-01, 0.42F-01. 0.47999999999990E-01. (.'F-01.

0.48FE-01. 0.4199qgog'9QOQF-01, 03]9999999qgF-01i ).?55F-0L*

0 .1E-01, Q.13R7499999999q -01. ,. 49Q999Q99Q9q4F-07?
0.487 4999999E7E-0?, 0.?467499999910E-2. 0.0. 1. I,1 , T .I .T

Ii 14 To T,
YOLR = 0.0 0.170

E -01
,  0.22F-01I 0 .2 7 3F- 0 1 , O0303-01 0.374-01 . _-

0.347F-01 0.36 E- 0O 1. 0.379f-01. 0.3-01. .3E- ........

0.382F-01, 0.34AE-01, 0.2ATE-01, 0.?3E-01 0.177F-01.

0.143E-01, 0.108E-01, 0.59F-0?. 0.9F-02e .0.0* 1T_ 1 1.r . , 1
1. * 1 74 T

RROL = 0.0
NX = 21 

--

SCALEZ = .0. 1 00l000OIE+01

SCALER = 0.1200000001E+01-
JTE = 1t
DELZS = 0.IF+004
NC = 2.
AN = 0.195E01. 

-

MACH 0.0'
MASS = 0.0'
$FND
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APPENDIX B - Continued

0.000 0.00o 0.000
.002 .01A .013
.005 .0? .025
.009 .07 .050
.014 .030 .075

.018 .032 .100
02?5 i035 .150

.032 .03~ .200

.042 03 .300

.048 .03Q .400

.050 .019 .500

.048 0318 .600

.042 .035 .700

.032 .029 .800,

.05 __ 07 .__ 0 ........ .........
;01A .018 .900

.014 .014 r925

.009 .011 .950

.005 006 ..975

.002 .001 .9AR
0.;000 0.000 1.000

36 51 ?1

1 1000
2 i1000

Input for Camber-Line Nacelle

SNUM
XOL = 0.0, 0.15E-01 0.25F-01, 0.5S-01. 0.75E-01, 0.IF+00.

0.15F+00. 0.2F+00o C.3F+00. 0.4E+60, O.5E+ nO, 0.fEOO.
0.7F+004 0.aE+00 0.8F,+00, 0.9F+0.o 0.9?5F+o00 O.QsF+00,
0.97qF+00, 0.9A75F 00 * 0.1F+01, I* To I. T, T. IT T. I. I. T.

YOLT = 0.0, 0.17E-02. 0.A13F-n?. 0.107AE-nl. 0.12~5;F-01. 0.1407F-01,
0.164E-01. 0.1794E-01, 0.1994F-01 0.211OF-01. 0.P135F-01.
0.2101F-nl0 0.1994F-01, 0.1794F-01, 0.164F-01, 0.1407F-0.
0.1255E-014 0.1078F-01. 0.R13F-0?. 0.37E-92. 0.0. 16 1t It. . I.

I. I4 14 TI I,
YOLR = 0.0. -0.37F-02, -0.8Al3-0?, -0.1078F-0l, -0.1?5 -Ol. -0.l407rn-01.

-0.164E-01. -0.1704F-0 1 -0.199 I 4F-01.9 -0. 101 '-._I - 0.213FF-).
-0.210IE-014 -0.1994E-019 -0.1794E-01] -0.164F-01, -0.1407F-01.
-0.1255E-01. -0.107PF-n1. -0.13F-0?. -0.37E-C2. 0.0. I. I. 1. T. T.
T I+ TI 1 IT

RROL = 0.13A71W+00*
Nx = 21.
SCALEZ = 0.1E+014
SCALER = 0.9E+014
JTE = 5
DELZS = 0.5E-014
NC = 29
AN = 0.185E*01.
MACH = 0.0,
MASS = 0.2E+02(
IFND

Input for NACA 1-89-100 Nacelle

$NUM - ---
XOL ... = -ooo,-. -F0-.65 00 -+Ff --. EO0. 00 01 0-UEO

0. 5F. 00 o.6E+0. - E-- O 0.75E00-o--- 0.75E.p1 0 ,
YOLT = 0.0. 0.413E-02, 0.604E-02, 0.863E-02, 0.1229E-01, 0.1488E-01,

0..175E-01, 0.1808F-01, 0.1885E-01, 0.1904E-019 0*1
-. io4Ei-T O.1904F-01, 0 .1904E-019 0* .i -Tf ,
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APPENDIX B - Concluded

o,199 -04-oI1 0,1894-01, 01796E-01. 0.1577E-019 0*1227E-O1,
0.717E-07, 0.375F-n2, 0.179E-029 0.0,

YOR 0.0. -0.q19E-03, -0.4F-03, -0.85E-039 -0.163E-029 -0. 2 02
-O26E-0. -0.446F-02, -061PE-029 -0.75F-029 -07 .f5FT

-0.7 F-02, -0.75F--02 -0.75E-02, -0.75E-029 -0.75E-02, -0.
7 5E-02, . ,

-0.79F-0P. -0.74AE-0, -0.531F02022 p-----0 -0 _9 -0 7Y-oL
0.0.

SBOL =- 0.1 404E *00 .
NX -. =- 25

SCiALE = 0.i+1, ..
SCALER 0.9F+01,

JTE . 7_ _.. . . . . .. .. . . . . . . . . . .

DELZS - = -. 1F*O0, . . .. . .0.

AN . . - .15E. .. ___.. .. . .. . ...... . . . ....

MACH = 0. 6F 00.
MASS = 0.7P7F+001

Output

The output listing consists of the upper and lower surface pressure coefficient. A

sample output listing is presented for the cambered airfoil case.

XOL= 0. CPT= -2.667AE-01 COR= -Q.4991F-;l
XOL= 1.2c00F-02 CPT= -. ;.2217F-01 COR= -9.49Q3FP-1
XOL= 2.5000E-0? CPT= -6.q5RQF-02 CPR= -2.7RA~OF-1
XOL= 5.0000F-02 CPT= -?.?222EE-01 CP= -3.1979E-1.
XOL =  7.5000E-A2 CPT= -3.197F-01 CPR= -3.N 0A2F-01
XOL= 1.0000E-01 CPT= -4.0671E-01 CDR= -2?.Qs04F--1
xOL= 1.5000E-01 CPT= -5.?227F-01 CPR= -2.3QopFe-
XOL= 2.0000F-01 CPT= -5.4801F-01 CPR= -?.0??RF-1
XOL= 3.000E-01 CPT= -. 50oE-1 CPq= -1.6511E-.
XO4L=,_.40OOE-01. CPT= -4.68715E-01 CDR=-1.5l, .qE-!1
XOL= 5.O000F-01 CPT= -3.5354E-01 CPR= -1.7272F-01
XOL= 6.O000E-01 CPT= -?.1705E-01 CPR= -1.Rl17--1
XOL= 7.0000E-01 CPT= -1.615F-01 CPR= -l. 44F-01
XOL= 8.0000E-01 CPT= -7.n207E-03 CPR= -1.?4cE-01
xOL= 8.5000F-01 CPT= 4.17ROF-0 CPR= -Q,60QE-2?
X0L= 9.0000E-01 CPT -  9.4420F-02 CDR= -6.4h67_E-0_?
XOL= 9.2500F-01 CPT= 1.1362E-01 CPR= -3. 143E-0?
xOL: 9.5000F-01 CPT= 1.3221E-0 CoP= -1.P?43E-(3
XOL= 9.7500F 01 CPT= 1.P229F-01 COn= 6.351 F-I)2
xOL= 9.875OF-01 C(T= ?.1151F-01 CPR= 1.025E-01
xOL= 1.OO000F+00 DT= ?.4196E-01 CPR= 1, Q93F-O
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Figure 1.- Field description.

21



Figure 2.- Computational grid for NACA M6 airfoil.
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Exact solution (Ref. 8)

Present method
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Figure 3.- Pressure distribution on NACA M6 airfoil.
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Figure 4.- Computational grid for airfoil in wall effect.
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Figure 5.- Pressure distribution on airfoil in wall effect.
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Figure 6.- Computational grid for parabolic body of revolution.
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Figure 7.- Pressure distribution on parabolic body of revolution.
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Figure 8.- Computational grid for camber-line nacelle.



-. 4 - O Streamtube curvature method O

O Present method

-. 2 O
.2 Outer surface

O O O0 0

.2

C
p

.4 -

Inner surface

.6 O O

.8

1.00 .2 .4 .6 .8 1.0

z/c

Figure 9.- Pressure distribution on camber-line nacelle.
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-1.2-1.2 O Experiment (ref. 10)
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Figure 11.- Pressure distribution on outer surface of NACA 1-89-100 nacelle.

M = 0.6; m/mo = 0.787.
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